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A completely spectral algorithm for analysis of flows over corrugated boundaries
is proposed. The algorithm treats the flow problem as an internal rather then a bound-
ary value problem, where the flow conditions are specified along a line in the interior
of the computational domain. The method eliminates the need for a coordinate gen-
eration and/or premapping required for regularization of the computational domain
in standard implementations of spectral discretizations. Various tests confirm the
spectral accuracy of the algorithme 1999 Academic Press

1. INTRODUCTION

Flows over corrugated boundaries are of interest in many applications. Good exan
are the use of grooved surfaces in reduction of skin friction drag [8, 9], high-efficier
membrane oxygenerators [11], analysis of the process of wave growth under the a
of wind [4], and analysis of the laminar—turbulent transition process in flows over rot
surfaces [5], among others. The main difficulty in simulation of such flows is associs
with treatment of boundary conditions on a geometrically irregular boundary.

There are two main approaches available in the literature. The first one, which we ¢
refer to as the domain perturbation, involves transfer of boundary conditions to a cel
mean location, resulting in a regular computational domain. The accuracy of the dor
perturbation depends on the type of boundary condition transfer procedure. The applica
of the first-order procedure, which is well described in [7] in the context of flow over
rough leading edge, is limited to situations where the boundary corrugations produce
modifications that can be described by a linear theory.

The second approach involves construction of a coordinate system where one o
coordinate lines overlaps with the corrugated boundary. Sobey [11] analyzed furro
periodic channels and used an analytical mapping resulting in a non-orthogonal refer
system. Caponét al. [4] employed an orthogonal transformation expressed in terms
an infinite series in their analysis of boundary layers over wavy surfaces. Benjamin
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FLOWS OVER CORRUGATED BOUNDARIES 379

considered a coordinate system based on streamlines of an inviscid flow over a wavy
in his analysis of shear flows over wavy walls. Balasubranian and Orszag [1] emplc
numerically generated conformal mapping in their simulations of flows over wavy wall

Other possible approaches include a full range of numerical coordinate generation
cedures [12], unstructured domain decomposition methods [10], and numerical confo
mapping specifically tuned to periodic geometries [6]. The last two methodologies
been extended to higher-order accuracy [6, 10]. Lack of spectrally accurate grid gener
techniques, however, limits the development of spectrally accurate algorithms. Nevel
less, one may combine any grid generation technique with the spectral discretization c
field equations as done, for example, in [1].

The main goal of the present analysis is the development of a fully spectral algori
capable of simulating flows over corrugated boundaries. This is achieved by posing
numerical problem as an internal problem rather than a boundary value problem.
computational domain is larger than the flow domain and completely surrounds it.
flow boundary conditions are imposed along a line that weaves through the interior of
computational domain; i.e., the boundaries of the flow and computational domains dc
necessarily coincide.

This paper is organized as follows. Section 2 describes a model problem, which is
to illustrate the algorithm. Section 3 provides a description of the algorithm. Sectio
discusses results of various numerical tests. Section 5 provides a short summary of the
conclusions.

2. PROBLEM FORMULATION

We shall describe our algorithm in the context of a convenient model problem. -
selected model problem consists of a viscous flow driven by a pressure gradient throt
channel with corrugated walls.

2.1. Reference Flow

Consider plane Poiseuille flow confined between flat rigid waljs-att1 and extending
to infinity in the x-direction (Fig. 1a). The fluid motion is described by the velocity an
pressure fields

Vo(X) = [Uo(X, ¥), vo(X, Y)] = [Uo(y), 0] = [1 — y?, 0], Po(X) = —2x/Re, (2.1)

where the fluid is directed towards the positkraxis, and the Reynolds number Re is base
on the half-channel height and the maximurrelocity. This flow is driven by a constant
negative pressure gradient.

2.2. Flow in a Corrugated Channel

Consider the upper and lower walls to have arbitrary shapes describgg(ky and
yL (X) (Fig. 1b), respectively, and characterized by a certain periodicity with wavelen
Ax =27 /a. The shape of the walls can be expressed in terms of Fourier series in the fi

YOO = Y (Ae™, w0 = Y (A)u€™, (2.2)

N=—00
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U)=1-y?

FIG. 1. Sketch of the flow domain. (a) Straight (reference) channel. (b) Channel with corrugated walls.
flow domain (dotted area) forms a subset of the rectangular domain.

where (Ag)L = —1+ Hi, (Ag)u =1— Hy, and(An)L = (A_n)} and (An)uy =(A_p){ in
order foryy (x) andy, (x) to be real, and the star denotes the complex conjugate. T
subscriptL refers to the bottom wall, while the subscriptrefers to the upper wall of the
channel. In addition, it is assumed that

min X) > —1, max X) <1,
UL yL(x) > 0max, Yu(X) <

i.e., the flow domain is bounded byoo <X <00, —1 <y <1 (see Fig. 1b). The flow in
the channel can be represented as

V(X) = [u(x, y), v(X, )] = Vo(X) + V1(X)
= [uo(y), O] + [u1(X, ), va(X, V], P(X) = po(X) + p1(X), (2.3)

whereV; and p. are the velocity and pressure modifications due to the presence of v
corrugations. Substitution of the above representation of the flow quantities into the Na\
Stokes and continuity equations results in the following form of the governing equatiot

1
UpdxU1 + U1dxUg + v1DUg + v1dyUs = —0x 1 + Ee(aXXU1 + dyyU1),
1 (2.4)
Ugdxv1 + U1dxv1 + v10yv1 = —0dyP1 + R_e(axxvl + Oyyv1), OxUy + dyvy = 0,
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where the symbadl denotes partial differentiation, subscrigtandy denote the arguments
of partial differentiations, an® = d/dy. Introduction of the stream function defined as

u; = By\I’, V1 = _axqjv

and elimination of pressure permits expression of the field equations (2.4) in the form
1
(Uody + dyWdy — 3 Wdy) AW — D?Ugdy ¥ = %AZ\IJ, (2.5)

where A denotes the Laplace operator. Singeandv; are periodic inx with the period
Ax =27 /a, the stream function can be represented as

nN=+o0

X, y) = Y Da(yE™™, (2.6)

N=—00

where®, = ®* .. In general, one cannot exclude the possibility that subharmonics e:
in the velocity field. Their presence, however, can be accounted for by a simple chanc
indices in (2.6). No subharmonics were found for parameter ranges used in the nume
tests (see discussion in Section 4).

The functionsd,,, n> 0, in (2.6) are governed by a nonlinear system of ordinary diffe
ential equations in the form

[D? — ina Re(ugDp — D?Ug) | @
k=400
—iaRe ) [KD®n Dk®k — (N — K)®n kDD Py] = 0, (2.7)

k=—o0

where D, = D? — n?a2. Equation (2.7) has been obtained by substituting (2.6) into (2.
and separating Fourier components.
The boundary conditions at the channel walls are expressed in the form

Uo(YL (X)) + u1(X, yL (X)) =0 and  vi(X,yL(xX)) =0 aty=y_(x), 2.8)
Uo(Yu (X)) + U1(X, Yu(X)) =0 and  vi(X,yu(x)) =0 aty=yy(x). .

The numerical implementation of these conditions is discussed in the next section.

Problem formulation is closed by specifying two additional conditions. The first conditi
is associated with the introduction of the stream function and can be selected arbitr
without affecting the generality of the formulation. The second condition arises due
the fact that arx-periodic velocity field may be associated with a pressure field that f
a component linear ix. For simplification of physical interpretation of the results, thi
condition can be cast in terms of the volume flux, in terms of the pressure gradient,
terms of any combination of both of them. The condition based on the volume flux has |
selected for presentation of the algorithm due to its simplicity. This condition involves o
kinematic characteristics of the flow and can be cast as

Wo(yL(X) + (X, yp (X)) =T, Wo(yu (X)) + WX, yu(X)) =T 4+ Qo, (2.9)

where ¥, denotes the stream function of the Poiseuille floiiy(—1) = 0), Qo stands
for the (specified) volume flux, an@l denotes an arbitrary constant. In all calculation
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presented, the volume flux in the corrugated channel has been @at:aé, i.e., itis the
same as the volume flux in the straight channel.

3. NUMERICAL DISCRETIZATION METHOD

The problem to be solved numerically consists of an infinite system of nonlinear o
nary differential equations (2.7) subject to boundary conditions (2.8)—(2.9). This sectic
devoted primarily to describing the numerical discretization of the above problem.

As a first step, the representation of the stream function of the flow modificatidas
truncated tavl leading Fourier modes, i.e.,

n=M
WX, Y)Y Da(y)e™™. (3.2)

n=—M

The corresponding, finite dimensional system of the ordinary differential equations for
functions®,,n=0, 1, ..., M, can easily be written on the basis of Eq. (2.7). This syste
can be discretized with spectral accuracy by introducing Chebyshev representations ¢
unknown function®,,,

j=00 j=K
n(y) = > GITi(y) =~ Y GITi(y), (3.2)
j=0 j=0

whereT; denotes the Chebyshev polynomial of fftle order and5{ stands for the unknown
expansion coefficient. The Chebyshev representations of the required deriZtivésith
| up tol =4) can be determined using a recursive algorithm described on p. 62 in [3].
Thenth equation of our system can be written in a general form as
En(Pg, @1,...,Py) =0 forn=0,..., M. 3.3)

The substitution of the Chebyshev expansions (3.2) and their derivatives into (3.3) g
the residual function

i= i=0 j=

j=K j=K j=K
a==a( G?H,E:Gﬁ}.”,E:GYﬂ), n=0,....M. (3.4
0 j=0

The problem is converted to an algebraic, nonlinear system by imposing the orthogon
conditions

(R, T)o=0, j=0,....K—4, n=0,...,M. (3.5)

The inner product used in (3.5) is defined as

1
(f,0)0 = / f)gX)0(x)dXx,  oX) =1 —x3)7Y2
-1
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Since the orthogonality properties of Chebyshev polynomials

T form=20

(Tm, Th)o =0 forms#n and (T, Tmhe = {ﬂ/z form = 0

take place, conditions (3.5) ensure a spectral rate of convergence with respect to the
cation thresholK in the expansions (3.2) provided that the solution being approximat
is smooth.

The discretization method described above can be viewed as a variant of the Cheby
tau technique. The reader should note that the projection is carried out onto the li
subspace spanned by the Chebyshev polynomials with the order oKup.tdhe additional
equations required to close the system are due to flow boundary conditions (2.8) and vo
flux conditions (2.9).

Numerical treatment of flow boundary conditions, which are to be enforced along
linesy, (x) andyy (X), poses a challenge and, at the same time, represents unique fea
of the proposed method. To explain the current approach to the boundary condition:
evaluate velocity components(x) = u(x, f(x)) andv (x) =v(x, f(x))along an arbitrary
linel:={(x,y):y= f(x)}, such that the functioffi is periodic with the periody = 27 /«,
and | f (x)| <1. This function can be expressed, without loss of generality, as a Fou
expansion in the form

n=Nax

foo= Y A (3.6)

n=—Na

The number of term$N, is arbitrary, however; only expansions with a finite number c
terms can be handled in the actual computations. Both velocity companesnsl v, are
x-periodic functions, with the same periag, and thus can be expressed in terms of Fouri
series as

n=NU r'|:NU
o) =u, f) = > Upd™,  u0=vx f))= Y V™ (37
n=—Ny n=—Ny

The lengths of these expansions can be calculated easily by noting that each modal
function®,, is approximated by a polynomial of ordiérwhich leads tdNy = K - Na + M.
In general Ny > M unlessk =0, which is clearly unacceptable.

The same velocity components can also be expressed using the discretized form
solution, i.e.,

n=M
() = u(x, F00) Z uo(f(x) + Y Dy(f(x)e"™
n=—M
n=M j=K _
=uo(f0)+ Y Y GIDT(f(x)e"* (3.8a)
n=—M j=0
n=M _ n=M j=K _
v =X, F()) = —ia Y nda(F))E™ = —ia Y > nG]T;(f(x)e"*.
n=—M n=-—M j=0

(3.8h)
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Comparison of (3.7) and (3.8) permits specification of flow boundary conditions for e:

Fourier mode in terms of the unknown coefficients of the Chebyshev expansions.
Substitution of (3.6) into (3.8) shows a need for evaluatiom;@ff (x)) andDT; (f (x)).

Both these functions are periodicxrmand can be expressed using the Fourier expansior

k=00 k=00
T = > wid“  DT(fe) = > digke, (3.9)
k=—00 k=—00

Use of the well-known recurrence relation for the Chebyshev polynomials
Ti+1(Y) = 2yTi(y) — Tj—1(y) (3.10)

leads to the following expressions for the coefficient3af; (f (x)):

S=00
u)lfrl =2 Z Acwp s — le(_l. (3.11)

S=—00

The evaluations of these coefficients begins with
wi=1 wp=0 fork>1  wi=~Ay, wi=A fork>1
The differentiation of the general formula (3.10) yields
DTj11(y) = 2Tj(y) + 2yDTj(y) — DTj_a(y) (3.12)

and leads to the following recurrence relation for the Fourier coefficienBsIof ( f (x)),
=23 Adl, —dl T+ 2w, (3.13)
s—_

whose evaluation is initiated with
=0 fork>0; di=1 di=0 fork>1  di=4A, d?= A fork>1

Substitution of (3.9) into (3.2) leads to the Fourier expansions

k=00 j=K o
()= Y > Glupe ™, (3.14a)
k=—o00 j=0
k=oco j=K o
DOn(f0)) = Y > Gldgek, (3.14b)
k=—o00 j=0

Insertion of (3.14) into (3.8) and separation of the Fourier modes result in the exp!
expressions for coefficients of Fourier expansions (3.7), i.e.,

m=M j=K
Un=Fnt > > danG" (3.15a)
m=—M j=0
m=M j=K )
Vo=—ie > > mw\ Gl (3.15b)

m=—M j=0
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The complex quantities,, n=0, 1, ..., are the Fourier coefficients of the reference flov
Ug calculated along the link i.e.,

n=00

uo(f () = Y Fp™™. (3.16)

N=—00

In the case of the Poiseuille flow, the Fourier coefficients have the form

j=Na j=Na
Fo=1-— Z A2, Fa=-— Z AA, (3.17)
j:—NA j=_NA

The actual range of the summation in (3.16}H8- Na.
Let velocity field satisfy the following conditions imposed at the line

U (X) = ulx, f(x)) = gux), v (X) = v(x, T(X)) =gy (X), (3.18)

whereg, andg, are given, periodic functions with the periagd, which can be expressed,
without loss of generality, as the Fourier expansions

n=Np n=Np
W)= D PE™, g = Y R (3.19)
n=—Np n=—Np

The number of terms in both of these expansions can be specified arbitrarily and has
assumed to be the same without loss of generality. In terms of the theory of square-integ
functions, conditions (3.18) are equivalent to the integral conditions

X+Ax X+Ax
/ [u(X) — gu(¥)]e"™*dx = 0, / [v(X) — g,(x)]e"™*dx =0, |n|>0

and can be expressed as
Un = P, Va=Ry, n>0. (3.20)

Typically, one would select the fird#l + 1 conditions forU, andV, to close the system
(3.5). We shall demonstrate that not all of conditions (3.20) are independent, howe
and that specification of velocity components along thellime(3.19) is not completely
arbitrary, but has to satisfy a certain constraint.

Lety denote the stream function of the flow in the corrugated channelji:e \o + ¥,
whereW, denotes the stream function of the reference flow. We can evaluating the line
I,i.e, ¥ (X) =¢ (X, f(x)).Clearly,y, is a periodic function ok, i.e., ¥, (X) = ¥ (X + Ax).
One can write the equality

X+Ax

YI(X+ Ax) = i (X) = /

X

dw')((x) dx =0, (3.21)

d
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which, after differentiation ofy; as a composed function, yields

X+Ay

/ {%(x, f(x)) + %(x, f(x))- f’(x)} dx=0. (3.22)
aX ay

The above formula can be rewritten in terms of velocity components specified at the li
as

X+Ax

/{_gv(x)+gu(x)' f'(0)}dx = 0. (3.23)

X

Substitution of (3.6) and (3.19) into (3.23) and integration of the resulting expression res
in

n=Na

Ro=—ia > nRA;, (3.24)

n=—Nx

The above shows that the mean valug,oi.e., Ry, cannot be specified arbitrarily; this value
results from specification ajf, as well as shape of the lini(x), i.e., Ay. The summation
in (3.24) extends betwean= +min(Np, Na). SinceNp can be extended arbitrarily (i.e.,
the length of the Fourier expansions (3.19) can be arbitrarily increased by adding to t
null terms), the limits of the summation are writtendahla.

Similar arguments witly, andg, in (3.23) replaced by, andv,, respectively, and with
use of (3.7), lead to the conclusion that

n=Na
Vo=—ia > nUpA;,. (3.25)

n=—Na

The above relation shows thétis not an independent quantity but results from specificatic
of U,. The summation in (3.25) extends betweea £min(Ny, Na). SinceNy > Nj, the
limits of the summation are written asN .

The flow boundary conditions can now be written as

m=M j=K
Un=Fat+ > > dnG'=P., M=nx0 (3.26a)
m=—M j=0
m=M j=K _
Vo=—ia > mw)nG'=R, M=x=nxL1 (3.26b)
m=—M j=0

It can be shown that in the case of numerical implementation, when the calculations
carried out with the use d¥l Fourier modes for the stream function, the conditigr= Ry

is automatically satisfied whell > Np. If M < Np but N5 < M, again this condition is
automatically satisfied. Otherwise

n=Na
Ro= Vo — (ia > nRA; +c.c.>, (3.27)

n=M+1
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which leads to a contradiction. Here, c.c. stands for the complex conjugate. The a
discussion shows that, regardless of circumstances, no conditidf faan be imposed.
One may note that in practical calculations an accurate solution can be obtained only \
the lengthM of its Fourier representation (3.1) is larger than bghandNp. In such cases
the conditionVy = Ry is satisfied automatically.

Flow conditions (3.26) can be specified along any line periodic, iand in particular,
along the top and bottom walls of the channel, i.e y@atx) andy, (x). The problem to
be solved numerically consists & + 1 fourth-order ordinary differential equations of
type (2.7) supplemented by Eq. (3.26) applied at the top and bottom walls, which prov
4.(M + 1) — 2 out of the required 4 M + 1) conditions necessary to close the system. Tt
reader may note that these conditions are of internal type rather than boundary type
indeed, no explicit relations between the values of the stream function and/or its deriva
are postulated at the boundaries of the computational domain (iyes, #tl). Consequently,
our system of ordinary differential equations is not supplemented explicitly by bound
conditions of any kind. The computed flow field extends over the whole computatio
domain, but only the part contained between the wall contgux) and y_(x) has a
physical meaning.

Equations (3.26) provide useful relations for evaluation of error in enforcement of fl
conditions along the walls. Since bdth andV, are defined for & n < Ny (see Eq. (3.7))
but flow conditions are imposed only forOn < M, the flow boundary conditions will not be
satisfied exactly. Evaluation of (3.26) for- M gives information about the absolute value
as well as spectral composition of the error. Since the method is spectrally accurate
error should be decreasing exponentially with increadihgThe evaluation of the error
is computationally very inexpensive because it involves only substitution of the alre
computed quantities. The simplicity in determination of the error permits a straightforw
implementation of the algorithm in a self-adaptive mode, where the number of Fou
modes keeps increasing until the specified accuracy criteria are met.

To close the problem of flow through the channel, we need to specify two arbitr
conditions. This need arises due to the dependen&g oh other coefficients of Fourier
expansions (3.7), as discussed above (see also discussion in Section 2). One of the re
conditions is selected by specifying the average value of the stream function at the I
wall, i.e.,

~

—M j=

%]

_ G (wl)] = —(HoL + T, (3.28)

s=—M j=

o

whereT is the selected average value of the stream function, the sub&cugnotes
the values corresponding to the lower wall, dfgl stands for the coefficients of Fourier
expansion of the stream function of the reference flow, i.e.,

n=M

Wo(f()) ~ Y Hpdm. (3.29)

n=—M

The second condition is selected by specifying the average volume flux through the cha
The volume fluxQ(x) is a periodic function ofk and can be represented as a Fourie
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expansion in the form

n=M

Q) ~ > Q™. (3.30)

n=—M

The coefficientsQ, can be evaluated by integrating tkevelocity componenti(x, y) =
Up(y) +U1(X, y) across the channel, i.e.,

Yu
Q(x) = /(UO +up) dy = Wo(yy (X)) + W(yu (X)) — WolyL (X)) — W(yL(x)), (3.31)
YL

and substituting the relevant expressionsfig(x) andW (x). The final form of the volume
flux condition is

GS(wl)y = Qo— (Hou +T, (3.32)

whereQq stands for the specified average volume flux (see Eg. (2.9)) and the sukbcri
denotes values evaluated at the upper wall.

Discussion of the treatment for the flow boundary conditions has been carried out s
in a rather general form that permits specification of bo#imdy (or tangential and normal
to the wall) velocity components. In the case of a solid non-permeable wall considere
Section 2, these conditions can be written in a simpler form, i.e.,

m=M j=K
Fn+ dy-mG"=0, M=n=0, (3.33a)
m=—M j=0
m=M j=K .
Mw)_mG" = 0, M>n>1, (3.33b)
m=—M j=0

with (3.28) and (3.32) unchanged. In this case, the stream function is constant and eq
T along the lower wall (see Eqg. (2.9)).

Equations (3.5), (3.28), (3.22), and (3.33) form a complete nonlinear algebraic sys
for the unknown coefficienté‘;'j‘, j=0,...,K,n=0,..., M. This system was solved it-
eratively by taking advantage of the structure of the original differential system. The res
may note that the coupling between the differential equations (2.7) is only due to nonlir
terms and thad, appears in these equations in a very special way. To illustrate this po
we write Egs. (2.7) in the form

{D? — ina Re| (up + Do) Dy — D*(ug + Ddo) [} P

= On(®y, P}, P2, P5,...), n=1 (3.34)
oo

D*®o = —2¢Re Im{ > n(D®;D*®, + &} D30y) } (3.35)
n=1

The right-hand side of (3.34) contains the nonlinear terms but does not cdntaimd @,,.
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Inthe above, the modal functions with negative indices have been replaced by their con
conjugates. The discrete system (3.5) supplemented by (3.28.), (3.32), and (3.33) ¢
written in analogous form as

LaG" =Rn(Gg, G1, ..., Gk; ... Gp LG ..., Gk Y
Goth et L Gt L6 GY, ... GY), n=0,...,M. (3.36)

In the abovel.,, denotes the discretization matrix of the linear differential operators frc
the left-hand side of (3.34) (fer> 1) and (3.35) (fon = 0). This matrix also includes four
rows containing coefficients correspondind3p, . . ., G in (3.28), (3,32), and (3.33B"
stands for the vector of the unknown Chebyshev coeffici@fts . . , Gy. R, stands for the
vector corresponding to discretization of the nonlinear opet@torThis vector includes
four entries corresponding to the parts of (3.28), (3,32), and (3.33) that are not inclt
in L,. The above form of the discretized system demonstrates that the linear part of (
(3.28), (3.32), and (3.33) can be split inth+ 1 separate linear subsystems, assuming tt
the couplings due to nonlinearity and due to boundary conditions (which are placed ir
right-hand side vectors) are known. In this study, the right-hand sides were calculated
information from the previous iteration and the subsystems were solved in descending ¢
starting with the subsystem corresponding te M. The iterations were continued until the
change in the magnitude of the modal functions was less than the prescribed convert
criterion e. Most of the results presented in this paper were obtained with the mact
accuracy level and thus the convergence criterion was set4e#0-14. The number of
the required iterations in most cases would be less than 50. The Chebyshev represent
of the nonlinear terms were calculated directly using exact formulas for manipulatior
Chebyshev polynomials. In general, the number of Fourier modes required to produ
solution with the desired accuracy (machine accuracy in this case) is nhot known in adve
The computations were thus carried out in a self-adaptive mode, where the solution w
be recomputed with the increasing number of mddesntil the norm of the highest modal
function reached a magnitude smaller than the desired accuracy (machine accuracy
present case). This “continuation strategy” usually reduces efficiency of the calculat
but improves convergence properties of the iterative scheme.

The implementation of the algorithm described in this paper involves subtraction of
reference flow, e.g., Eq. (2.3). This step is not required in general and a version of
algorithm that solves for the complete flow can be easily worked out.

4. TESTING OF THE ALGORITHM

In this section, we shall discuss the results of numerical testing of the algorithm. We <
demonstrate the spectral accuracy of the flow field approximation and discuss how che
of different available parameters affects this accuracy. All tests discussed have been c:
out for the Reynolds number Rel100 unless otherwise noted. For simplicity, the uppe
wall of the channel has been assumed to be flatyi.,e= 1, while the shape of the bottom
wall has been taken as

yL(X) = =1+ H + H - cosax), (4.1)
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i.e., it contains only one Fourier mode. The reader may note that the shape of the b
wall is completely described by two parameters, i.e., the wavenumbed the amplitude
H_ . Itis of interest to know how the variations Bif. anda can affect the absolute accuracy
of the calculations.

In order to demonstrate the spectral accuracy of the algorithm, two aspects of the apj
imation should be considered. For tihadirection, the Chebyshev expansions (3.2) witl
coefficients calculated from the Galerkin conditions (3.5) are guaranteed to be spect
accurate with the increasing number of terkhisWe have found that in most cases sixty
Chebyshev polynomials provided machine accuracy. This number needs to be increas:
a — oo (shorter waves), especially when higher Fourier modes begin to play a signific
role in the solution. This need for an increased number of Chebyshev polynomials ul
such conditions can be explained by noting that each amplitude funétjathevelops a
boundary layer neay = —1 asa — oco. These layers are extremely thin for larger value
of « and for higher Fourier modes (see Fig. 2). Inside the layers the funcbigasd their
derivatives change rapidly, while in the rest of the domain they assume values very c
to zero. In order to obtain the required resolution ngar—1, and in order to avoid the
(numerical) oscillations in the distributions &f, outside the boundary layers, the truncate
Chebyshev expansions (3.2) must contain a larger number of terms. Typical30 for
a =20, andK ~ 160 fora = 50.

The second aspect of the spectral accuracy involves the convergence of the trun
Fourier series describingvariations of the flow field. In all tests dealing with this issue
the number of Chebyshev polynomiddswas kept sufficiently large so that the associate
discretization error was reduced to machine accuracy level. The errors to be discussed |
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FIG. 2. Distribution of the real part of the derivative of the amplitude functio®, as a function ofy for
higher modegn > 11) in the area close to the lower wall far=10 andH, =0.025. Formation of boundary
layers, which are completely contained within a strip of thickness equal to the maximum height of the corrug:
(i.e., 2H.), is clearly visible for each amplitude function.
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FIG. 3. Variations of the Chebyshev norm (4.2) of the derivaivé, as a function of the mode number
for « = 1. Calculations have been carried out with= 20 Fourier modes.

occur solely due to truncation of the Fourier series.

Figure 3 displays variations of the Chebyshev norm of the first derivative of the amplit
functionD @, as a function of the Fourier mode numipef he norm decreases as a functiol
of n with the rate of the decrease very rapidly reaching (asymptotically) exponential fo
The Chebyshev norm used in the testing is defined as

1 1/2

Dyl = / Don(y) - DL (Y (y) dy b (4.2)
]

wherew denotes the Chebyshev weight functio(x) = (1 — x?)%/2. The derivativeD &,
rather then the function®, have been selected as the test quantities because they dire
correspond to the Fourier representation obtimomponent of velocity vector.

The accuracy of enforcement of flow boundary conditions (2.8) is crucial for the propo
algorithm. Components of velocity vector evaluated at the lowerwyak) = u(x, y_ (X))
and v, (X) =v(X, y_ (X)) should satisfy conditions (2.8). However, in numerical imple
mentation only the firsM Fourier modes are set to zero, as discussed in Section 3 (
Eq. (3.33)). The rest of the available Fourier modes ffoi- 1 < n < Ny) evaluated at the
lower wall provide a convenient measure of the magnitude and spectral composition o
error. This error can be evaluated easily from Eq. (3.15) through a simple substitutio
the already computed quantities. In the tests discussed beloandv,_ were computed
using 50 modesNl < 50 < Ny), which was sufficient to provide machine accuracy.

The error in enforcement of flow boundary conditions can be measured by introducing
norms, i.e., thé ,.-norm and the.,-norm, and applying them to both velocity component
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evaluated at the lower wall. These norms are defined as

luLX) lloo:= sup [u(x, y(X)I, o) oo := SUP |v(X, YL(X))], (4.38)
0<x<2m/a 0<x<2r/a
Ny 12 Xt 12
lug (X))l2:= /|u(x,yL<x)>|2dx ;e ll2i= /|v<x, yL (X)) [ dx
X X
(4.3b)

The first norm is of greater interest in assessing the error of the method and thus is
in the discussion that follows. The second norm gives qualitatively similar results with
numerical values being approximately 10 times smaller than the corresponding value
the first norm.

Figure 4 displays variations dfu, ||, and|jv. |« as a function of the total number of
Fourier modedM used for the stream function approximation. The reader may note that
magnitude of contributions of the higher modes decreases exponentially. The distribut
of up (x) andv, (X) over a single period are shown in Fig. 5. Both functions are oscillato
in x with maxima located close to= 7, i.e., around the bottom of the corrugation. The fac
that the maximum error in enforcement of flow boundary conditions occurs at the bot
can be explained by noting that all amplitude functidrns n > 1 attain their maxima (in
both real and imaginary parts) at or very nearwyte —1. One can expect therefore that
contributions of higher Fourier modes are relatively more important at these partic
locations, and thus the rate of error reduction as a function of the total number of Fol
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FIG. 4. Variations of theL .-norm (4.3a) of th&x, y) components of velocity vector evaluated at the lower
wall ug =u(x, y. (X)), v. = v(X, Yy (X)) as a function of the total number of Fourier modésised in the calcu-
lations fora = 1.
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FIG. 5. The (x, y)-components of velocity vector evaluated at the lower wall=u(x, y. (X)), v, =
v(X, Y (X)) fore =1.0, H_ = 0.05 with M =15 Fourier modes used in the calculations.

modesM would be smaller in the vicinity of the bottom of the corrugation as compar
to its top. This effect is more pronounced for large wavenumbedsie to the fact that
boundary layers appearing in the distributionsbgfs with a sufficiently large index are
thinner then the total depth of the wall corrugatiad 2(see Fig. 2).

According to the implementation of boundary conditions (2.8), the Fourier spectrun
both components of velocity vector evaluated at the wall (see Fig. 5) should not con
any harmonics of order lower then the number of Fourier modes used in the calculat
(M =15 in this case). This property of the solution provides a useful test for accuracy
consistency of the algorithm. Results shown in Fig. 6 confirm that indeed the first 15 Fol
modes have been eliminated. These can be estimated on the basis of these results that.
conditions used in this particular example, calculation With- 25 modes should provide
results with accuracy of machine arithmetic.

A series of calculations have been carried out in order to demonstrate that the ass|
form of solution (2.6) is sufficiently general, at least for the range of parameters con
ered in this work. In principle, the stream function can either contain subharmonics o
quasiperiodic with respect to tixevariable. Although it is possible that such solutions ma
exist in our model problem for certain parameter settings, they have not been found in
of the test calculations. As an illustration, we shall consider three cases of the same
with corrugation amplitudéd, =0.05 and corrugation wavelengily =27 /3. In case A,
the bottom wall was assumed to have the shape of the principal Fourier mode witt
wavenumber = 3 and the relevant calculations were carried out usihg: 10 Fourier
modes. In case B, the same shape was assumed to be represented by the second
mode (the principal mode has the wavenumber1.5), while in case C it was representec
by the third Fourier mode (the principal mode has the wavenumbet). In order to have
fully equivalent representations, the number of Fourier modes used in cases B and C

M =20 andM = 30, respectively. The selected representations admitted subharmonic
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FIG. 6. Fourier spectra of distributions af andv, shown in Fig. 5. The reader may note the absence of th
first 15 modes.

% type in case B and subharmonics%dfype in case C. In all three cases calculations wel
initiated with three different initial approximations containing all Fourier modes and in-
cases the solution process resulted in equivalent solutions. In cases B and C all subha
ics vanished during the iteration process. Figure 7, which displays the Fourier spect
the x-component of velocity vector evaluated at the lower wal{x), demonstrates that
solutions obtained in all three cases are identical.

The dependence of the boundary error on the shape paramesewtH, , for a fixed
numberM of Fourier modes, has been also investigated. The rjarnj., was used as
a measure of the error. Figure 8 illustrates variations of this norm as a function of
amplitudeH_ while Fig. 9 shows variations of this norm as a function of the wavenumt
«. The available results suggest that the error is at the machine accuracy leMel émd
o« smaller then certain critical values. Once these values are reached, the error begi
increase rapidly in a somewhat universal manner. The universal (asymptotic) error beh:
for increasingH, can be approximated by a simple power law forma || o, ~ H,_ﬁ”,
where the exponerfty depends on the wavenumheand the number of Fourier modiss
used. The universal (asymptotic) error growth as a function of increasiag be expressed
by a similar power law, i.e}ju; ||« ~ ', where the exponeit, depends on the amplitude
H_ and the number of Fourier mod&k used. The available numerical results suggest th
Bu~M+2andB, ~M + 1. Careful analysis of Figs. 8 and 9 shows that increasing t
number of Fourier modeb! delays the onset of the asymptotic error growth asand
a increase), but once the critical valuestdf anda are reached, the error growth is more
rapid. This error behavior suggests a very rapid increase in the strength of nonlinear ef
once a certain threshold inandH__ is reached.

One additional issue might be important from a practical point of view; i.e., how ma
modesM should be used in order to capture, say, 99% of the “total information” regard
the flow field. Before an answer can be given, the concept of “information content” neec
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FIG. 7. Fourier spectra of the-component of velocity vector evaluated at the lower wall= u(x, y, (X)),
calculated for the amplitudeél, =0.05 and the wavelength, =27 /3, using three different forms of Fourier

expansion. Case A: only basic harmonics areincluded 8.0, M = 10). Case B: 12-subharmonics are admissible
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of any subharmonics in the solution.
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FIG. 8. The L. -norm (Eq. 4.3a) of thex-component of velocity vector evaluated at the lower wall,
u. = (X, YL (X)), as a function of the amplitudel_ of the wall corrugation, plotted for different values of the
wavenumbewr and evaluated using eith&f =8 (solid lines) orM = 12 (dashed lines) Fourier modes. Since the
expected value is zero, the magnitude of this norm provides a measure of error in enforcement of flow bou

conditions.
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FIG. 9. The L.-norm (Eg. 4.3a) of thex-component of velocity vector evaluated at the lower wall,
u. = (X, Y. (X)), as a function of the wavenumber plotted for different values of the amplitude¢, evalu-
ated using eitheM =8 (solid lines) orM = 12 (dashed lines) Fourier modes. Since the expected value is ze
the magnitude of this norm provides a measure of error in enforcement of flow boundary conditions.

be precisely defined. For example, one may consider the kinetic eBerdy ) contained in
the firstM Fourier modes as an appropriate measure, and then the information conten
be defined ag (M) := Ex (M)/Ek (c0). The symbolEk (co) denotes the kinetic energy
of the actual solution, which, in general, may not be known. However, one can ex|
that the calculated value & (M) converges to a certain limit witM — oo; this limit
can be approximately determined by carrying out calculations for incredsingtil the
difference|Ex M) — Ex (M — 1)| < ¢, whereg is a small, positive number.

Kinetic energy represents only one of many possible measures. A reasonable alterr
is offered, for example, by the mean pressure drop along the corrugated wall. Various
guantities have also been investigated, leading to the conclusion that the best meas
offered by quotients based on velocity components. The measures of information col
adopted in this analysis are thus defined as

Ul (M) vl (M)
_ ly(M) = 4.4
e VM (44)

(M) = = ol (o)’

where each component of the velocity field is considered separately, and thé npsnms
defined as

2nfa [ 1 12

1Dl = / /|D(x,y>|2w<y>dy dx b . (4.5)
1

0

The norm (4.5) arises naturally from the mathematical context of the proposed met
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which involves construction of the solution in the Hilbert space spanned by the se
functions

Br = {bj.n(X, y) = Tj(y) explinax), j > 0, |n| > 0},

which are orthogonal in the following sense:

2nja 1

<bj,k1 bm,n)H = / /bj,k(xv y)br*‘nn(xv y)w(y) dy dX:O, fOI’j ;é m or k # n.
0 —1

The numerical tests have shown that the “information measures” (4.4) provide more
strictive criterion of convergence than those based on either the kinetic energy or pre:
gradient. In other words, high information content in the sense of (4.4) guarantees
physically relevant characteristics of the flow field are calculated with high accuracy
should be noticed that none of the possible definitions of the quoti€iM$ may guar-
antee that (M) is monotonically increasing and upper bounded by unity, which mea
thatly (M) andly (M) are naot, in a literal sense, information content measures. We h:
found, however, that such exceptional cases occur very seldom. Most common beh
is illustrated in Fig. 10, which displays the quotiehgg M) andly (M) calculated for the
amplitudeH, =0.02 and for several values of the wavenumbeSimilarly, Fig. 11 shows
the quotientsy (M) andly (M) calculated for the wavenumber= 10 and different values
of the amplitudeH, . In both cases the same tendency is observed; i.e., an increase of e
a or Hi increases the strength of nonlinear effects and necessitates use of a larger nt
of Fourier modes. The reader may use these graphs to estimate the number of Fourier r
M required to guarantee that the solution captures at least, say, 95% of the total inform.
content.

All tests discussed so far have been carried out for the lower wall represented by a s
Fourier mode (see Eq. (4.1)). The formulation of the algorithm is, however, general ar
can deal with shapes of both walls represented in terms of an arbitrary number of Fo
modes. Figure 12 displays streamline pattern associated with the flow in a channel w
walls have the shape given by

yL(x) = —0.85+[(0.04- €** 4 0.01- €%* + 0.025- €3**) + c.c],
yu(X) = —0.85+ [(0.0125- €*X + 0.0375- €2* + 0.025- &%) . 27/3 4 c.c],

with the wavenumber = 1.0 and calculated usiniyl = 24 Fourier modes.

5. LIMITATIONS OF THE ALGORITHM

The flow problem is well posed in the flow domain, but its nature in the extended cc
putational domain is not known. The proposed algorithm relies on the assumption tha
solution to the flow problem can be extended to a larger computational domain and
this extension is sufficiently smooth. If this extension contains singularities, the propc
method will fail to deliver the expected accuracy and, in fact, it may fail to converge at
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FIG. 10. The information content quotienty (a) andly (b) defined by Eq. (4.4) as a function effor
H, =0.02.

The potential difficulties can be illustrated using two simple examples. We shall be
with a one-dimensional boundary value problem

X2F"(X) + XF'(x) — F(x) = 0, FO.1) = A, F(1) =B, (5.1)
whose solution in the form

10 1 1
F(x) = ®(1OB — AX+ ®(1OA - B); (5.2)
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FIG. 11. The information content quotients (a) andly (b) defined by Eqg. (4.4) as a function bf, for
a=10.0.

is infinitely smooth in [0.1, 1]. We wish to solve this problem by approximating the soluti
in the extended domain [0, 1] and imposing conditiorxat 0.1 as an internal condition
rather then as a boundary condition. Obviously the solution cannot be smoothly extel
to [0, 1] because of singularity at= 0. The smooth extension is only possible for the ver
special case d = 10A, but even then an arbitrary small change of the boundary data wo
create a singularity in the extended solutiorxat 0. This means that a method based o
spectral discretization in the extended domain should fail to converge.

The second example is more closely connected to the flow problem discussed in
study and involves the Dirichlet problem for the Laplace equation formulated for
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FIG. 12. Flow pattern in the channel with the lower wall locatedyat= —0.85+ [(0.04€** +0.01e/2* +
0.025¢%) + c.c.] and the upper wall locatedyat = 0.85+ [(0.0125¢* + 0.0375/ % 4 0.025¢ %*)&"/% 4 ¢.c.]
for Re=20.

x-periodic domain shown in Fig. 1b. The boundary conditions are assumed to be peri
and the problem can be stated as

AF =0 inD, FX -1 =g.(x), F(X yu()=guX), (5.3)
FO,y)=F(@2r,y) forye[-11], '
where, for simplicity, the lower wall is assumed to be flat. In the ab&velenotes flow
domain. We shall consider extended, regular computational domgn [0« [—1, 1] and
seek the approximate solutidfa in the form of Fourie—Chebyshev series, i.e.,

FeX. ¥) = > > (Crk COSNX) + Sy SiNNX)) Tic(Y). (5.4)
n k

We shall denote the difference between the extended and original dom&8ihRestriction
of Fe (defined inD + D*) to D represents a solutioR of the original problem. We shall
demonstrate that the above representation of the solution is, in general, not acceptab!
Consider a functior that is harmonic everywhere D, but the extension of which is
singular at an arbitrarily selected pointdr. Because of the presence of singularity, thi
function cannot be represented by the Fourier expansion (5.4). The reader may note
Eqg. (5.4) (with properly selected coefficients) represents nevertheless a certain harn
function in D + D*. It can be shown that function of this form can approxim&ten
D with a prescribed accuracy (in the sense of sup-norm). This approximation may
be very accurate iD* but this is irrelevant. To see that, map conformally the extends
domain in such a way thdd maps onto an annular region. The functiBnexpressed in
new variables, can be expanded in a Laurent series whose upper radius of conver
is determined by the distance between the mapped singularity and the origin. Approp
truncation of these series from above produces approximatienth the desired accuracy
in the image ofD in the transformed domain. The resulting harmonic functdrcan be
extended arbitrarily far from the origin. The inverse mapping sdndback toD + D*
where it approximates functioh in D (but not in D*) with the same accuracy. Sin¢ég



FLOWS OVER CORRUGATED BOUNDARIES 401

is harmonic in the entire extended domain, its representation in the form (5.4) exists
is spectrally convergent. Sind€ approximates= in the whole extended domain, it must
grow very rapidly inD*; this growth is more rapid when the error of the approximation
reduced. This means that the rate of convergence of the Fourier—Chebyshev series, d
the fact that it is spectral, is very slow, particularly in those partBbfvhich are located
in the vicinity of the singularity. Increased accuracy requirements imply slower rate
convergence and necessitate use of an extremely large number of terms. This may ma
method impractical in applications.

The above examples illustrate situations when the proposed algorithm fails. Ger
conditions that guarantee the required smoothness of the extended solution of the Né
Stokes equations, and thus guarantee appropriate performance of the proposed algc
are not known. In all cases considered in the present study, no failure has been en
tered. Since the failure of the algorithm manifests itself either by the loss of converge
or by a very slow convergence, the reliability of the results can be tested a posterior
ing convergence studies. If the algorithm is diagnosed as unreliable for a particular
problem, one has no choice but to limit calculations to the physical domain and to |
on either a numerical coordinate generation or an analytical mapping that transform:
corrugated physical domain into a regular computational domain. Such tests have been
in the present study and the results obtained agreed with those produced using the
approach.

6. CONCLUSIONS

An algorithm for a direct, spectrally accurate solution of the Navier—Stokes equation
domains with corrugated boundaries has been proposed. The algorithm eliminates the
for the coordinate generation and/or premapping required for regularization of the con
tational domain in standard implementation of spectral discretizations. The flow prob
is posed for computational purposes as an internal problem rather than a boundary
problem, with the flow boundary conditions specified along a line that weaves through
interior of the computational domain. The discretization is based the Chebyshev expan:
in the normal-to-the-wall direction and the Fourier expansions in the direction along
wall. Flow boundary conditions for each Fourier mode are expressed directly in terms o
efficients of Chebyshev expansions by using composite function formulation. The exp
expressions provided for evaluation of error in enforcement of flow boundary conditi
permit implementation of the algorithm in a self-adaptive mode based on prescribed ¢
bounds.

Various tests confirm that the algorithm delivers spectral accuracy. The absolute r
nitude of the error (when the number of Fourier modes is kept constant) increases
increase of both the wavenumberand the amplitudéd of the wall corrugation. This
growth becomes proportional to a certain powexafndH for a large enougly andH.
Variations of the error suggest a rapidly increasing strength of nonlinear effects anc
need to use a large number of Fourier modes whandH reach a certain threshold.

The algorithm relies of the existence of a sufficiently smooth extension of the fl
solution to the complete computational domain. Conditions that guarantee existence of
an extension are presently not known and caution is advised when applying the algor
to new classes of problems.
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